

Fig. 2. A projection of the structure of WO_{2} on to the (010) plane.
such as $\mathrm{VO}_{2}, \mathrm{TcO}_{2}$ and NbO_{2} (Rogers, Shannon, Sleight \& Gillson, 1969) as well as in AlWO_{4} (Doumerc, Vlasse, Pouchard \& Hagenmuller, 1975) and GaWO_{4} (Palmer, 1977).

There is no evidence for the space group $P 2_{1}$ as suggested by Magnéli \& Andersson (1955) from either the X-ray or neutron powder profiles: the symmetry
and size of the unit cell of WO_{2} are such that there would be no fully resolved peaks $h 0 l, l=2 n+1$ in the 2θ range investigated. However, refinement was attempted in $P 2_{1}$; no improvement in the agreement between observed and calculated profiles was seen, and indeed the atomic coordinates refined effectively to the symmetry-equivalent positions in $P 2_{1} / c$.

The authors thank the Science Research Council for providing neutron beam facilities at AERE Harwell and for a CASE Research Studentship to DJP in conjunction with ICI Ltd., Mond Division.

References

Bacon, G. E. (for The Neutron Diffraction Commission) (1972). Acta Cryst. A28, 357-358.
Brandt, B. G. \& Skapski, A. C. (1967). Acta Chem. Scand. 21, 661-672.
Chaoin, C. \& Marion, F. (1963). Bull. Soc. Chim. Fr. p. 212.

Doumerc, J. P., Vlasse, M., Pouchard, M. \& Hagenmuller, P. (1975). J. Solid State Chem. 14, 141151.

Magnéli, A. \& Andersson, G. (1955). Acta Chem. Scand. 9, 1378-1381.
Palmer, D. J. (1977). Part II Thesis, Oxford.
Phase Diagrams for Ceramists (1969). 1969 Supplement. Columbus, Ohio: American Ceramic Society.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
Rogers, D. b., Shannon, R. D., Sleight, A. W. \& Gillson, J. L. (1969). Inorg. Chem. 8, 841-849.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sleight, T. P., Hare, C. R. \& Sleight, A. W. (1968). Mater. Res. Bull. 3, 437-444.

Acta Cryst. (1979). B35, 2201-2204

Dieuropium(III) Germanate Oxide

By Katsuo Kato, Masami Sekita and Shigeyuki Kimura
Mukizaishitsu Kenkyusho,* 1-1 Namiki, Sakura-mura, Niihari-gun, Ibaraki-ken 300-31, Japan

(Received 14 May 1979; accepted 4 June 1979)

Abstract. $\mathrm{Eu}_{2}\left(\mathrm{GeO}_{4}\right) \mathrm{O}$, monoclinic, $P 2_{1} / c, a=$ 9.977 (7), $b=7.136$ (4), $c=6.854$ (4) $\AA, \beta=$ $115.78(6)^{\circ}, Z=8, D_{m}=6.84(2), D_{x}=6.90 \mathrm{Mg}$ m^{-3}. Crystals were prepared by melting a pre-sintered mixture of $\mathrm{Eu}_{2} \mathrm{O}_{3}$ and GeO_{2} in an image furnace with a tungsten halogen lamp as heat source. The sevencoordination polyhedra of Eu^{3+} ions in a set of

[^0]equivalent sites form slabs parallel to (100) by edgesharing. These slabs are connected to the corrugated layers of the edge-shared polyhedra of sevencoordinated Eu^{3+} ions in other equivalent positions through common edges of the polyhedra and $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ bonds of the GeO_{4} tetrahedra.

Introduction. Of the germanates and silicates of the rare-earth elements $\mathrm{Ln}_{2} \mathrm{XO}_{5}(\mathrm{Ln}=\mathrm{Sc}, \mathrm{Y}, \mathrm{La}, \mathrm{Ce}, \ldots$, © 1979 International Union of Crystallography
$\mathrm{Lu} ; X=\mathrm{Si}, \mathrm{Ge}$), the crystal structures have been determined for $\mathrm{Sc}_{2} \mathrm{GeO}_{5}$ (Gorbunov, Maksimov, Kharitonov \& Belov, 1974) and $\mathrm{Y}_{2} \mathrm{SiO}_{5}$ (Michel, Buisson \& Bertaut, 1967). The germanates of Lu, Yb, $\mathrm{Er}, \mathrm{Ho}, \mathrm{Dy}, \mathrm{Tb}$ and Y are isomorphous with $\mathrm{Y}_{2} \mathrm{SiO}_{5}$ (Buisson \& Michel, 1968). Leonov \& Bondar (1973) classified the compounds $\mathrm{Ln}_{2} \mathrm{GeO}_{5}$ into two subgroups of different structure types and stated that the germanates, $\mathrm{Ln}_{2} \mathrm{GeO}_{5}$, of $\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$ and Eu with larger ionic radii than Gd^{3+} are orthorhombic while those of Tb, Dy, Ho, Y, Er, Tm, Yb, Lu and Sc with smaller ionic radii are monoclinic. The crystal structure of $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$ was investigated because the crystals prepared by the present authors were found to be monoclinic and to adopt an unknown structure which is evidently not isotypic with those of $\mathrm{Sc}_{2} \mathrm{GeO}_{5}$ and $\mathrm{Y}_{2} \mathrm{SiO}_{5}$.

The lattice constants were refined by least squares from the 2θ values of 19 reflections measured on a four-circle diffractometer (Rigaku) with Mo Ka radiation $\left[\lambda\left(\right.\right.$ Mo $\left.K \alpha_{1}\right)=0.70926 \AA$ i $]$ monochromatized with a pyrolytic-graphite crystal ($2 \theta_{M}=$ $12 \cdot 17^{\circ}$). The systematic absences $h 0 l$ with $l \not \equiv 0(\bmod$ 2) and $0 k 0$ with $k \not \equiv 0(\bmod 2)$ indicated space group $P 2_{1} / c$. Within the limits of $2 \theta \leq 90^{\circ}$, $h \geq 0$ and $k \geq 0$, the intensities of 3782 reflections were collected on the same diffractometer operated in the $2 \theta-\omega$-scanning (when $2 \theta \geq 30^{\circ}$) or in the ω-scanning mode ($2 \theta<30^{\circ}$). Those reflections whose net intensities $\left(I_{o}\right)$ did not exceed the e.s.d.'s $\left(\sigma_{I}\right)$ were considered to be unobserved. The 2806 observed reflections were corrected for absorption [numerical integration with $8 \times 8 \times 4$ Gaussian points in the specimen bounded by six faces; specimen size $0.10 \times$ $0.07 \times 0.02 \mathrm{~mm}, \mu(\mathrm{Mo} K \alpha)=33.5 \mathrm{~mm}^{-1}$] and then reduced to a set of 2706 independent reflections.
The positions of the Eu and Ge atoms were determined from the Patterson function by means of a minimum function (Buerger, 1959). The O atoms were located by a difference synthesis. The least-squares refinement of the coordinates and anisotropic thermal parameters of the atoms was performed with a program written by one of the authors. The sum of $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=1 / \sigma^{2}$ and $\sigma=\sigma_{l} F_{o} /\left(2 I_{o}\right)$ was minimized. The scattering factors given by Cromer \& Mann (1968) were used with corrections for dispersion (Cromer \& Liberman, 1970). A correction was also made for extinction with the formula of Zachariasen (1968) in the following simplified form, modified for the partially polarized incident beam:

$$
\begin{aligned}
F_{c} & =s F\left[1+(g / \sin 2 \theta)\left(1+\cos ^{4} 2 \theta \cos ^{4} 2 \theta_{M}\right)\right. \\
& \left.\times\left(1+\cos ^{2} 2 \theta \cos ^{2} 2 \theta_{M}\right)^{-1}(s F)^{2}\right]^{-1 / 4},
\end{aligned}
$$

where $g=2.7(1) \times 10^{-6}, s=1.267$ (4). The coefficient g was treated as one of the free parameters to be refined; s is a scale factor. The atomic coordinates
and isotropic thermal parameters calculated from the anisotropic ones are listed in Table 1.* $R=\sum| | F_{o} \mid-$ $\left|F_{c}\right| / / \sum\left|F_{o}\right|=0.050$ for the 2706 non-zero reflections. The parameter shifts in the last cycle were $<0.6 \%$ of the e.s.d.'s. The last difference syntheses with $\Delta F=$ $F^{\prime}\left(\left|F_{o}\right|-\left|F_{c}\right|\right) /\left|F_{c}\right|$, where F_{c} and F^{\prime} represent the structure factors calculated with and without the extinction and dispersion corrections respectively, revealed no further significant details of the structure, except that ripples of electron density within the limits of ± 8 e \AA^{-3}

[^1]Table 1. Atomic coordinates and isotropic thermal parameters of $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$

	x	y	z	$B\left(\AA^{2}\right)$
	y	y	$(18006(6)$	$0.13492(9)$
$\mathrm{Eu}(1)$	$0.18212(8)$	$0.38(1)$		
$\mathrm{Eu}(2)$	$0.47725(6)$	$0.12804(9)$	$0.70949(8)$	$0.39(1)$
Ge	$0.80231(14)$	$0.08932(18)$	$0.27673(18)$	$0.37(2)$
$\mathrm{O}(1)$	$0.1086(11)$	$0.0543(15)$	$0.8315(14)$	$0.81(17)$
$\mathrm{O}(2)$	$0.2146(9)$	$0.0790(14)$	$0.5483(13)$	$0.60(19)$
$\mathrm{O}(3)$	$0.3904(9)$	$0.1176(14)$	$0.3218(12)$	$0.52(22)$
$\mathrm{O}(4)$	$0.6107(10)$	$0.1347(6)$	$0.1166(13)$	$0.59(37)$
$\mathrm{O}(5)$	$0.8894(11)$	$0.2092(13)$	$0.8931(15)$	$0.58(38)$

Fig. 1. Projection of the $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$ structure on to (010). Numbers indicate the heights of atoms in hundredths of the b axis.

Fig. 2. Structure of $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$ viewed along c .
were found around both Eu positions. These ripples might be due to the small systematic errors introduced by the extinction and/or the absorption correction(s).

Discussion. Figs. 1 and 2 show the $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$ structure projected parallel to [010] and [001] respectively. While the small Sc^{3+} ions $\left[r\left({ }^{\mathrm{V}} \mathrm{Sc}^{3+}\right)=0.745 \AA ;\right.$ Shannon \& Prewitt (1970)] in $\mathrm{Sc}_{2} \mathrm{GeO}_{5}$ are each surrounded octahedrally by six O atoms (Gorbunovet al., 1974), there are two crystallographically independent Y^{3+} ions $\left[r\left({ }^{\left({ }^{\mathrm{I}} \mathrm{Y}^{3+}\right)}\right)=0.900 \AA\right.$] in $\mathrm{Y}_{2} \mathrm{SiO}_{5}$, one of which is coordinated to six and the other to seven O atoms (Michel et al., 1967). In $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$, both $\mathrm{Eu}(1)$ and $\mathrm{Eu}(2)$ have seven O -atom nearest neighbours in accordance with their larger ionic radii $\left[r\left({ }^{{ }^{\mathrm{V}}} \mathrm{Eu}^{3+}\right)=\right.$ $0.947, r\left({ }^{\mathrm{VII}} \mathrm{Eu}^{3+}\right)=1.03 \AA$]. The coordination polyhedra [monocapped octahedra (Wells, 1975)] of $\mathrm{Eu}(2)$ are joined by edge-sharing to form a slab with quasi-close-packed O-atom layers parallel to (100) (Fig. 3). The coordination around $\mathrm{Eu}(1)$ can be regarded as a distorted monocapped trigonal prism. The coordination polyhedra of $\mathrm{Eu}(1)$ are connected to each other through common edges and form a corrugated layer parallel to (100) together with the equivalent polyhedra in the neighbouring unit cells (Fig. 4). The slabs

Fig. 3. Slab of the edge-shared coordination polyhedra of $\mathrm{Eu}(2)$ viewed along a.

Fig. 4. Corrugated layer of the edge-shared coordination polyhedra of $\mathrm{Eu}(1)$ and the GeO_{4} tetrahedra viewed along a.

Table 2. $\mathrm{Eu}-\mathrm{O}$ distances $(\AA$)
E.s.d.'s are in parentheses.

Symmetry code

(i)	$1-x, 1-y, \quad 1-z$			$x, y, \quad 1+z$
(ii)	x,	-y, $\quad \frac{1}{2}+z$	(vi) $-1+$	$x, y,-1+z$
(iii)	x,	- $y,-\frac{1}{2}+z$	(vii)	$x, y,-1+z$
(iv)	$1-x$,	$-y, 1-z$		
$\mathrm{Eu}(1)$	$-\mathrm{O}\left(1^{\text {vil }}\right.$)	2.389 (9)	$\mathrm{Eu}(2)-\mathrm{O}(2)$	2.386 (9)
	$\mathrm{O}\left(\mathrm{I}^{\text {iil }}\right.$)	2.491 (10)	$\mathrm{O}(3)$	2.412 (7)
	$\mathrm{O}(2)$	2.308 (8)	$\mathrm{O}\left(3^{\text {iv }}\right.$)	$2 \cdot 260$ (10)
	$\mathrm{O}\left(2^{\text {III }}\right.$)	2.529 (9)	$\mathrm{O}\left(3^{\text {III }}\right.$)	2.284 (10)
	O(3)	2.349 (9)	$\mathrm{O}\left(4^{\text {lv }}\right.$)	2.572 (10)
	$\mathrm{O}\left(5^{\text {iv }}\right.$)	2.500 (10)	$\mathrm{O}\left(4^{\text {II }}\right.$)	2.404 (10)
	$\mathrm{O}\left(5^{\mathrm{v}}\right)$	2.415 (10)	$\mathrm{O}\left(4^{\text {V }}\right.$)	2.516 (8)
Mean		2.426	Mean	2.404

Table 3. Bond lengths (\AA) and angles $\left(^{\circ}\right)$ around the Ge atom

$\mathrm{Ge}-\mathrm{O}$ distances are given on the diagonal; $\mathrm{O}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ angles in the upper-right and the lower-left triangles respectively. E.s.d.'s are in parentheses. The symmetry code is given in Table 2.

	$\mathrm{O}\left(1^{\text {iv }}\right)$	$\mathrm{O}\left(2^{\text {iv }}\right)$	$\mathrm{O}(4)$	$\mathrm{O}\left(5^{\text {III }}\right)$
$\mathrm{O}\left(1^{\text {iv }}\right)$	$1.721(9)$	$2.59(1)$	$2.99(1)$	$2.91(1)$
$\left.\mathrm{O} 2^{\text {iv }}\right)$	$96.2(4)$	$1.757(9)$	$2.68(1)$	$2.93(1)$
$\mathrm{O}(4)$	$117.5(4)$	$98.6(4)$	$1.772(9)$	$2.82(1)$
$\mathrm{O}\left(5^{\text {III }}\right)$	$117.0(5)$	$116.2(4)$	$109.4(5)$	$1.690(9)$

Mean $\mathrm{Ge}-\mathrm{O} \quad 1.735$
of $\mathrm{Eu}(2)$ and the corrugated layers of $\mathrm{Eu}(1)$ are linked through a common edge $O(2)-O(3)$ and further by $\mathrm{O}-\mathrm{Ge}-\mathrm{O}$ bonding of the GeO_{4} tetrahedra.

It can be seen from Figs. 1 or 2 that there exist only four $\mathrm{Eu}-\mathrm{O}$ bonds across the unit-cell boundary parallel to (100), suggesting the relative weakness of the bonding in this direction as compared with the other directions. Moreover, the electrical neutrality can always be maintained when the crystal is divided into two parts at any unit-cell boundary. These facts might well explain the perfect cleavage of the crystal parallel to (100). Prior to the structure determination, measurements of emission and absorption spectra of $\mathrm{Eu}_{2} \mathrm{GeO}_{5}$ had been carried out by one of the authors. The results had predicted that the Eu^{3+} ions occupy two sets of equivalent positions with low point symmetry. The bond lengths and angles were calculated by means of a local version of the ORFFE program (Busing, Martin \& Levy, 1964), and are tabulated in Tables 2 and 3.

References

Buerger, M. J. (1959). Vector Space and its Application in Crystal Structure Investigation, pp. 239-247. New York: John Wiley.

Buisson, G. \& Michel, C. (1968). Mater. Res. Bull. 3, 193-197.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Gorbunov, Yu. A., Maksimov, B. A., Kharitonov, Yu. A. \& Belov, N. V. (1974). Kristallografiya, 19, 1081-1083; Sov. Phys. Crystallogr. (1975). 19, 669-670.

Leonov, A. I. \& Bondar, I. A. (1973). Izv. Akad. Nauk SSSR Neorg. Mater. 9, 56-60; Inorg. Mater. 9, 50-53.

Michel, C., Buisson, G. \& Bertaut, E. F. (1967). C. R. Acad. Sci. Sér. B, 264, 397-399.

Shannon, R. D. \& Prewitt, C. T. (1970). Acta Cryst. B26, 1046-1048.

Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 66. Oxford: Clarendon Press.

Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

[^0]: * National Institute for Researches in Inorganic Materials.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34519 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

